从技术指标了解放大器的品质(2)


  D、瞬态互调失真(Transient Intermodulation Distortion)

  瞬态互调失真,简称TIM失真,这是在70年代才公开发布的失真,它与负反馈关系密切。众所周知,负反馈(Negative Feedback)的作用是将输出值倒相变为负数,随后将之反馈到输入端,和设定值相减,得出误差信号,然后控制器就会根据误差大小作出修正,从而大幅度减少失真。

  但由于负反馈使输入信号和反馈的输出信号相减,降低了信号电平,当负反馈量大到使输出信号降低到和输入信号电平相同,即整个线路完全没有放大时,这种放大器叫缓冲放大器(Buffer Amplifier),它有输入阻抗高,输出阻抗低的优点,常被用来作阻抗匹配使用。如要要使输出信号有较大的电平,那放大器的增益要相应加大,而这在胆机和晶体管机中并不困难。

  但负反馈在有效地降低失真时,却引起新的失真即瞬态互调失真,这种失真在晶体管(石机)上机最为严重。这是因为石机常用高达50-60dB左右的深度负反馈来提高工作稳定性和减少失真,虽然此时晶体管机将轻易获得较高的技术参数。但有得也有失,为减少由深度负反馈所引起的高频寄生振荡,石机一般要在前置推动级的晶体管集电极和基极之间加入一个小电容,使高频段的相位稍为滞后,但无论电容的容量如何小,也要有一定时间来充电,当信号中含有高速瞬态脉冲时,电容充电速度跟不上时,这一瞬间线路是处于没有负反馈状态,这个时候由于输入信号没有和负反馈信号相减,造成信号电平过强,使放大线路瞬时过载(Overload),由于石机负反馈量大,过载强度更高,常达到几十倍以上,此时输出信号会出现削波(Clipping)现象,瞬态互调失真由此产生,由于石机中这种失真出现最多,因此该失真常被称为“晶体管”声。

  虽然负反馈的时间延迟很难解决,但要减少其影响,可用大环路浅度负反馈,这样就算有负反馈时间延迟,输入信号也不过强;另外也可用多级负反馈,这样由于反馈时间快,路径短,不容易诱发瞬态互调失真。此之外,在设计制作时还应尽量利用各种屏蔽和滤波措施来减少各种高频干扰信号进入放大器,这些射频干扰虽然人耳听不见,但它们的频率很高,极易诱发瞬态互调失真。

  瞬态互调失真是当信号速度超过放大器的瞬态响应能力范围之外才会发生的,另外,除了这处失真外,过快的信号也会产生另一种即振铃(Ringing)失真现象,当输入信号速度快而幅度小时,最先出现的是振铃现象,当这个信号的速度快到某种程度时瞬态互调失真也会出现,但当信号速度快兼幅度大时,是直接进入瞬态互调失真状态。各种各样的速度快但幅度小的高频干扰噪音,最容易引发振铃,这就是音响设备要有完善的抗干扰措施的一大原因。

  E、界面互调失真(Interface Intermodulation Distortion)

    这种失真较少为人知道和提及,它和下面提到的阻尼系数一样,不但和放大器线路有关,而且和音箱也有很大关系。因此在介绍这两项指标前,应先了解音箱有关这方面的特性。目前的音箱所用的单元绝大部分是采用动圈式喇叭,其主要结构包括有一个产生磁场的永久磁铁和一个音圈,严格来说动圈式喇叭属于一种特殊的直流马达,只不过音圈只需要的是直上直下的来回活动而不是旋转。

    不管是交流马达或是直流马达都有可逆性的,也就是讲在某种条件下它们能充当发电机,直流马达其实在结构上和直流发电机没有什么区别,永磁式直流马达的转轴转动,就能在接线端上产生出一定的电压,同理,动圈式喇叭的振膜运动时就会在接线端上产生电压,电压的大小与运动的速度和幅度有关。

    由于非线性化和损耗的关系,扬声器不能对放大器输出的全部电能加以利用,因此会有剩余电能产生,当放大器输出的电能无法全部转变为机械能量时,多余的电能必定会在扬声器音圈中产生出额外的反电动势(Back emf),这个反电动势会由喇叭线反馈到放大器的输出端,然后根据放大器内阻的大小形成一个电压,这个电压会被负反馈线路反馈到输入端,和输入信号打成一片,使中低频声音混浊,此时的分析力和层次感会大大减弱。这时产生的问题称为界面互调失真,另外由于振膜的机械惯性原因,在音圈中也会产生多余电能,这会使扬声器的低频控制力变差。
界面互调失真和喇叭内阻和负反馈线路有关。

   降低负反馈量和放大器内阻(即提高阻尼系数),能减少界面互调失真的影响,同时Bi-Wird双线接驳也是另一种改善方法,因为高低音分开传输能使低频的反电动势不能对高频信号产生影响,从而有效改善地音质,这也是为什么我们在双线接驳的系统上听到的音质更清晰一些的缘故。


编辑:18928843168 微信:gzhifi E-mail:gzhificom@163.com 用QQ登录论坛,参与分享。